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A conference on ‘Stratified Fluids’ was held in Ann Arbor, Michigan, 11-14 
April 1967, under the sponsorship of the National Science Foundation. The 
meeting was organized by Professor C.-S. Yih (University of Michigan) with 
the assistance of the other members of the scientific committee: T. B. Benjamin, 
W. R. Debler, L. N. Howard, R. R. Long, J. W. Miles, W. H. Munk and 0. M. 
Phillips. Thirty papers were delivered on subjects involving the application of 
stratified fluid problems to geophysical phenomena, waves in stratified fluids, 
experimental and observational investigations, and stability. We give here a 
brief account of the proceedings. The papers delivered will not be published in 
a formal volume; references to where they can be found are given a t  the end of 
this article. 

1. Introduction 
There has been a great surge of interest in geophysical fluid mechanics in the 

past decade. This has led to a symposium on rotating fluid systems held at  
La Jolla, California, in the spring of 1966 (Bretherton, Carrier & Longuet- 
Higgins 1966), and now to a symposium on stratified fluid systems. These two 
subjects are, of course, fundamental to geophysics because of the rotation of 
the earth and the ever-present stratification of density or potential density in 
the oceans and atmosphere. 

Papers on stratified-fluid systems appear here and there in the older literature 
of the nineteenth and twentieth centuries. Among the earliest are papers by 
Stokes (1847) on waves in a system of two superimposed fluids, and by Burnside 
(1889) and Love (1891) on waves in continuously stratified fluids. The interplay 
of shear and stratification in the problem of stability of stratified flows dates 
back to Helmholtz (1868). Other contributions of importance iiiclude the work 
on stability by Taylor (1931), the circulation theorem of Bjerknes (1898), and 
the motion of obstacles in stratified fluids (Kuttner 1938; Lyra 1943). Problems 
in which both rotation and statification are important were studied by many 
people interested primarily in the meteorological and oceanographic applications 
rather than the basic fluid mechanics of the problems. These included the con- 
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tributions of Bjerknes et al. (1933) on the problem of the stability of discontinuity 
surfaces in rotating, stratified fluids, the potential vorticity theorem of Ertel 
(1942) and the problem of inertial oscillations in rotating, stratified fluids by 
Rossby (1938). 

During and immediately after the Second World War, research proceeded 
slowly although many of the basic studies of the past decade had their origins 
in this period. Examples of these are: oscillations of stratified fluids by Gortler 
(1943), long-wave phenomena in stratified fluids by Keulegan (1953) and Long 
(1956), stability of rotating and stratified fluids by Charney (1947) and Eady 
(1949), experimental work in rotating stratified systems by Pultz (1953) and 
Hide (1953), and in stratified liquids by Long (1955), and mountain flows by 
Scorer (1949). 

Recent work, including that reported at this conference, represents a re- 
markable increase in effort to extend earlier investigations and to initiate new 
lines of investigation. We must acknowledge that there have been no funda- 
mental breakthroughs in this area to be compared, say, with Prandtl's boundary 
layer theory, but much recent work and many of the papers reviewed below 
yield valuable extensions of older work on homogeneous and stratified fluids, 

2. Wakes in stratified fluids 
The problem of the motion of obstacles in stratified fluids received attention 

in three papers delivered at  the conference. An early investigation along these 
lines was made by Long (1959), who found a similarity solution for the motion 
far upstream of an obstacle. The motion consists of a blocking of the fluid at  the 
obstacle level and jets above and below this level. Similar effects occur when 
obstacles move along the axis of rotation of a rotating fluid.? G. S. Janowitz" 
presented a general attack on this problem. The slow-motion solution he pre- 
sented was valid at large distances from the body so that the details of the 
body shape could be ignored and the flow considered as induced by a point 
disturbance having a finite drag. His upstream solutions reduced to those of 
Long at sufficiently great distances, and he resolved the paradox that similarity 
solutions of the boundary-layer equations do not exist downstream. He found 
decaying waves downstreap which are not permitted by the boundary approxi- 
mation. His theoretical approach is similar to that of Childress (1964) in his 
investigation of motion of a body in a rotating fluid. 

The problem of motion in the vicinity of an obstacle was investigated in a 
special case in the paper by R. R. Long & S. Martin." Here a similarity solution 
neglecting diffusion and inertial forces was obtained for slow stratified flow over 
a flat plate. An experiment involving a plate moving slowly through a channeI 
of linearly stratified salt water verified the theory for a narrow range of the 
parameters. The outstanding feature was the decrease of thickness of the plate 
boundary layer with distance downstream. The singularity of the solution 
occurred at  the back of the plate. 

explained in terms of internal wave propagation in a perfect fluid. 
t A recent paper by Bretherton (1967) shows that certain aspects of blocking may be 

* Indicates paper presented at  the conference. 
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Another aspect of wakes in stratified fluids was discussed by M. Tulin." In  
part, his paper was concerned with the collapse of a turbulent wake behind a 
body moving in a stratified medium. When such wakes occur or, for example, 
when turbulence accompanies the breaking of an internal wave, the mixed 
region tends to collapse and spread horizontally. The collapse is accompanied 
by the generation and propagation of internal waves. The problem has im- 
portance when related to the motion of submarines in or near the thermocline. 
The body itself does not create internal waves of any importance, but the wake 
has a collapse period close to that of internal wave periods and, therefore, 
generates waves very efficiently. Tulin's experimental investigations, presented 
on film, showed the generation of internal waves by a pulsating source of dis- 
turbance, and also quasi-steady propagation of a homogeneous body of fluid. 

3. Observation and experiment 
An experimental paper by W. Debler" involved a joint problem of convection 

and stratification. Debler generated a heated plume in a wind tunnel in which 
there was a basic linear, vertical temperature gradient in the air moving over 
the heated strip. The plume was identified by temperature measurements on 
a movable probe downstream of the heat source. Measurements indicated a 
high degree of uniformity of turbulent mixing in the plume, 

Three papers by J. Crease,* G. Dowling" and T. Pochapsky" were concerned 
with observations of stratified fluid phenomena in the oceans. The paper by 
Crease represented an attempt to study the relationship between stability, flow 
profile and vertical mixing in the Faeroe Bank Channel between the Atlantic 
Ocean and the Norwegian Sea. Observations of interest were a strong thermo- 
cline near the bottom of the channel and an associated deep-water current with 
speeds up to 15 cmjsec. 

The paper by Dowling described an investigation of the internal waves in 
shallow water having a strong stratification during the summer months. From 
the cross-spectral analyses of isotherm fluctuations, low frequency, internal tides 
were observed which follow the surface tides. The data were found to satisfy 
the characteristic equation found from internal wave theory if the density is 
assumed to vary as the hyperbolic tangent with depth. This theory enables 
one to determine the variation of internal wave phase velocity with depth at  
any given frequency. The effect of interaction between the waves and the shear 
flow is that when the shear is greater than the phase velocity, the top part of 
the internal wave is sheared off, causing the wave energy to be dissipated in 
the upper and lower layers by turbulent mixing. This observation accounts in 
part for the low coherence of internal waves as a result of the co-existence of 
internal waves and turbulence. The theory and experimental data seem to sup- 
port the concept of interaction of internal waves, shear flows, and turbulence, 
giving rise to an energy transfer from one part of an internal wave spectrum to 
another. 

T. E. Pochapsky presented some measurements of internal waves and tur- 
bulent motions in the deep ocean well away from land. Conditions were sought 
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in which the Richardson number Ri is of order one or greater, since, if Ri is 
much smaller, turbulent mixing would be lacking and that part of the ocean 
would be virtually stagnant for a long time. Neutrally buoyant floats, equipped 
with pressure and temperature sensing devices, were dropped in clusters. 

D. Harleman & J. Dake* discussed the problem of the generation and main- 
tenance of thermal stratification in quiescent lakes by incoming solar radiation. 
Although theoretical in nature, this work was inspired by observations of the 
temperature fields in lakes such as Tahoe. The authors made objection to earlier 
work on the subject which assumed that the heat was absorbed completely at 
the surface, on the grounds that very large coefficients of turbulent diffusion 
have to be postulated for such models to explain existing observations. The 
present paper developed a theory that fits observations fairly well by neglecting 
fluid motions and assuming that much of the incoming radiation is absorbed 
at various depths. In  discussion of the paper, objection was raised on the 
grounds that the fluid motion is of importance. Motions at great depths can 
certainly be generated by internal waves and the breaking of these can create 
turbulence which could easily overshadow the molecular processes envisioned 
by Harleman & Dake. Indeed there is evidence of considerable turbulence at 
great depths in the oceans. 

4. Interplay of rotation and stratification 
Three papers by V. Barcilon & J. Pedlosky,* G. Veronis" and G. Walin,* con- 

sidered the interplay of rotation and stratification. The subject is of great im- 
portance to  meteorology and oceanography because large-scale phenomena in 
atmosphere and oceans are dominated by the effects of both of these. These 
papers together with earlier work dating back to Ekman, make the properties 
of boundary layers in these systems reasonally clear. With weak or moderately 
strong stratification, horizontal boundaries possess an Ekman layer in which 
viscous and Coriolis forces are in essential balance. The thickness of this layer is 

where v is the viscosity and Q is the angular velocity. The boundary-layer 
structure on vertical walls is more complicated. With zero stratification, this 
layer, called the Stewartson layer, has a double structure. An inner layer has 
a thickness of the order of E )  where E is the Ekman number, and an outer 
layer a, thickness of the order of Ei. The presence of a moderate amount of 
stratification has no effect on the Ekman layer, but the E )  side-wall layer splits 
into a double layer called a buoyancy and a hydrostatic layer. The outer 
Stewartson layer is still present. Barcilon & Pedlosky presented a study of these 
boundary layers in a fluid cylinder composed of rotating outer walls and a top 
and bottom rotating differentially. A constant stratification is imposed and, 
since there is no heat transfer through the walls, attention is confined to periods 
of time before any substantial tendency toward uniform density takes place. 
In  addition to the Ekman number, E ,  the phenomena depend on a number US 
where u is the Prandtl number and Si is the ratio of the Brunt-Vaisda fre- 
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quency to  the angular velocity. It was shown that the theory of homogeneous 
fluids applies when aX < E%, and attention was confined to the region of inter- 
mediate stratification @ < 08 < E4. It is in this intermediate region that the 
triple structure of the side-wall boundary layer occurs. With moderate stratifica- 
tion, the interior motion is mainly controlled by Ekman layer suction. The 
motion can be decomposed into two components: the first satisfies the Taylor- 
Proudman theorem of a homogeneous fluid, and the second, a baroclinic com- 
ponent, satisfies the thermal wind relationship. 

Veronis’s paper was concerned with the analogy between rotating and strati- 
fied fluids, but its results have strong bearing on the boundary-layer problems 
considered by Barcilon & Pedlosky. It has been known for a long time that there 
is a close relationship between stratified and rotating fluids. Occasionally one 
can demonstrate an exact correspondence. A famous example is provided by 
the stability problems of a non-rotating fluid between two horizontal heated 
plates and the homogeneous fluid contained between two concentric rotating 
cylinders with a narrow gap. Veronis showed that there is an exact correspon- 
dence of the differential equations of linearized, steady, two-dimensional (axi- 
symmetric) rotating and stratified cases. The total problems are exactly 
analogous for closed containers of fluid when vorticities are prescribed at the 
top and bottom boundaries in one case, and temperatures at  the lateral 
boundaries in the other case. These have been called the spin-up and heat-up 
problems, respectively. Corresponding quantities in the rotating and stratified 
cases are x N x, u N w, w - u, v N T, E N R where R is the Rayleigh number. 
The analogy breaks down for time-dependent and three-dimensional problems. 
Veronis also showed how one can arrive at the rotating and stratified fluid 
problems by adding stratification to the rotating case and rotation to the 
stratified case. The stratified problem yields an ‘Ekman’ layer on vertical walls 
and E i  and Eb layers on horizontal walls. The Ekman layer has the familiar 
spiral structure, although the spiral is in the (w,  T)-plane rather than the 
(u, v)-plane. 

The paper by Walin reported an attempt to obtain an integrated under- 
standing of boundary layers in rotating and stratified fluids along surfaces with 
an arbitrary orientation with respect to the gravitation and rotation vector. 
The results may be summarized in terms of a parameter B, which is proportional 
t o  the product of the Brunt-ViisBa frequency, and the sine of the angle be- 
tween the gravitation vector and the normal to the boundary. When B is large, 
for example, one of the boundary layers becomes formally identical with the 
Ekman layer but, as predicted by Veronis’s paper, the density or temperature 
field replaces one of the velocity components in the Ekman layer. 

5. Stability of stratified flows 
A session on stability began with an introductory discussion by L. N. Howard” 

on stability criteria for stratified flows. Howard discussed three general stability 
criteria for parallel flows. For instability it is necessary that 

(i) D2w = 2 ( ~ - c , , ) J ( y ) / [ ( w - c , ) ~ + c ~ 2 ]  somewhere in the flow field. This is 
Rayleigh’s criterion for stratified flows. 
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(ii) [c, - &(Wmin + wmax)12 + C: < [i(wma, - wmin)12.  This is due to Howard. 
(iii) J < a. This result is due to J. W. Miles. 

Here J (y )  is the Richardson number, w is the primary velocity, and c = c,+ic,  
is the complex wave speed. All of these criteria can be obtained from the 
stability equation by considering the basic variable to be ( W - C ) ~ - ~  times the 
streamfunction, and integrating the multiplied equation in the domain of 
interest. For theorems (i), (ii) and (iii), .n takes on the values 1, 0 and 4, re- 
spectively. Howard's attempts to generalize these to non-parallel flows were 
successful only in the case of no stratification, for which the flow was found to 
be stable if the basic vorticity decreases toward the right everywhere looking 
downstream along the streamlines. Howard pointed out that the lack of success 
in further generalization of these criteria to non-parallel, stratified flows is 
probably related to an insufficient understanding of the physical relevance of 
the transformed streamfunction. 

A paper by J. Miles* considered the particular case when the velocity and 
the logarithm of the density vary exponentially with height. When the Bous- 
sinesq approximation was made, the solution could be found in terms of a 
hypergeometric function, which predicted stability for all wavelengths and 
Richardson numbers. The paper was ably presented by H. Huppert in Miles' 
absence. 

An interesting approach to inviscid stability problems was given by R. S. 
Scorer,* who considered the stability of spiral flows in the inviscid limit. Intro- 
ducing a local instability by rotating the vorticity vector a small amount about 
the streamline, the displacement is unstable if the rate of change of the vorticity 
component is in the same direction as the angular displacement of the vorticity 
vector, that is, the vortex line must contract. The unstable directions are found 
to be those which lie between the vorticity vector and the direction of the axis 
of the vortex. In particular, when the disturbed vorticity vector bisects the 
angle between these two vectors, the growth rate is maximized. Scorer's theory 
is a generalization of Rayleigh's theorem and shows that toroidal disturbances, 
as exhibited by Taylor-Gortler cells, are the most unstable. 

M. E. Stern" presented some considerations of the effect of a long wave super- 
imposed on a salinity profile varying sinusoidally in the horizontal direction. 
He speculated that advection of the salt fingers in groups will produce a growing 
buoyancy force. The local wave energy would then decay until it is sufficiently 
quiet for the salinity fingers to grow again, restarting the whole process. 

The growth of interfacial waves in a long tube filled with a two-layer fluid 
was demonstrated in films shown by S. A. Thorpe." A horizontal tube of rect- 
angular cross-section containing stratified fluid was suddenly raised to an in- 
clined position. The pictures then showed a fairly regular array of roll waves 
forming ahead of the surge. The wave patterns were clearest when the fluids 
were miscible, i.e. brine and fresh water. The oil and water pictures appeared 
less well defined. 

Viscosity effects on stratified flows were considered in several papers. A layer 
of viscous fluid in simple shear under an inviscid thick layer moving at uniform 
velocity was considered by D. Y. Hsieh," who found that for long waves the 
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presence of the shear flow tended to stabilize the system. Some doubts were 
expressed as to the reasonableness of considering a primary viscous flow with a 
discontinuity in shear stress. 

The interaction of thermal instabilities and the instabilities associated with 
shear flows were considered in separate papers by K. W. Gage & W. H. Reid,* 
A. J. Faller & R. Kaylor" and E. Palm, T. Ellingsen & B. Gjevik." Gage & Reid, 
using classical, linear stability theory, considered the basic flow to be a parabolic 
velocity profile with a linear temperature gradient. They found that when the 
stratification is hydrostatically unstable and the Prandtl number is unity, 
one-to-one mathematical correspondence could be found between this flow 
and spiral flow between concentric cylinders. Using an asymptotic analysis 
with the Richardson number J held fixed, they found a critical value of 
J (J, = - 0.366 x above which the instability was of the Tollmien- 
Schlichting type. Below this value thermal instability governs, BBnard cells 
dominate, and Squire's theorem is no longer valid. Similar effects were found 
by Faller & Kaylor, who made a numerical investigation of the interaction of 
a shear flow in an Ekman layer with thermal stratification. In  particular, when 
thermal and shear instabilites were at the point of almost equal growth rate, 
the roll vortices associated with each mechanism moved with different speeds, 
interacting so that vorticity was continually exchanged from one horizontal 
layer to  another. 

Palm et al. presented an expression by which one can determine whether 
hexagons and/or rolls are present in BBnard convection. When the Rayleigh 
number exceeds the critical value R,, and lies between values Rl and R,, both 
hexagons or rolls are stable. For values above R,, however, rolls are the only 
stable mode. Rl and R, are given by the expression 

where x1 and x2 are found by numerical methods and are relatively independent 
of the boundary conditions. From the formula it is seen that to observe hexagons, 
i.e. to have R < R,, thin layers are essential. 

A lecture by D. Fultz & J. Kaiser* summarized the results of the 'dishpan 
experiments' conducted by both the Chicago group and the MIT group. They 
pointed out that the difficulty of exact comparison was due to differing methods 
of measuring horizontal temperature gradients. Stability analyses by Kuo, 
Barcilon, Brindley and Lorenz pertain to these experiments, the first two giving 
very good agreement with experiments with respect to neutral stability curves. 
Kuo's results for wave-numbers agree more closely than Barcilon's with those 
observed in the experiments. One difficulty with the four theories mentioned 
is that all of them require the stratification number to be proportional t o  the 
square of the Rossby number, whereas a linear relation is more appropriate to 
most of the experiments. 



696 lli. P .  Graebel, R. R. Long and T .  Y .  T .  W u  

6. Geophysical phenomena 
A survey lecture ‘The Ocean’ was given by 0. M. Phillips.* In  a typical 

situation, the ocean has an upper layer of constant density, below which the 
density increases with depth. The density stratification is characterized by a 
seasonal thermocline and a permanent thermocline in addition to other minor 
variations in the lower layer. The discussion was aimed at  the dynamical 
characteristics of the ocean and some types of interacting motions in which 
the density stratification plays an important role. 

In  the simple case of constant Vaisala frequency N ,  there are internal waves 
of frequency n = N cos 8, where 8 is the angle between the wave vector k and 
the horizontal. The group velocity, ca = an/ak, is always perpendicular to the 
phase velocity c2, = nk/k2 and lies in the vertical plane containing cP such that 
the sum of cp and cs gives a horizontal vector of magnitude N / k ,  and indepen- 
dent of 8. Since co is also the energy flux vector, various modes of propagation 
of internal waves can be predicted on this basis. For instance, when 8 = in, a 
vertically localized wave packet propagates in its own horizontal layer. Also, 
a wave group having an inclined energy flux propagating into a region bounded 
by a free surface above and a sloping ocean bottom below may undergo a 
multiple reflexion at the free surface and the bottom. 

In a more general case of variable Vaisalii frequency N ( z ) ,  the internal waves 
with frequency n such that n < N(x)  for z1 < z < z2 and n > N ( z )  outside this 
region are clearly trapped in the layer z1 < z < z2,  a phenomenon known as 
the Vaisala trapping. 

The non-linear effects may give rise t o  resonant interaction between a set of 
internal waves ; energy can be exchanged between these waves when their wave- 
numbers k,, k,, k, and frequencies n,, n2, n3 satisfy the conditions 

k,  k ,  = k,, n, & n2 = n3, 

The amplitude of the wave generated by this interaction remains small if N is 
large compared with the rates of shear (or vorticity) in the wave modes (Phillips 
1966). However, if the vorticity is large, the forced wave may be strong. 

Another interesting phenomenon is the interaction of internal waves with a 
shear flow. The effect of a uniform weak shear in the horizontal direction on a 
train of internal waves is to change their wave-number k to be directed more 
toward the vertical, thereby shifting the energy spectrum to a lower frequency 
band, until k is vertical and frequency vanishes. With a slight generalization, 
a slowly varying, horizontal weak shear can be considered as the limit of an 
internal wave having zero frequency and k vertical. This wave mode acts as a 
catalyst for the interaction between two internal waves n, = n2, by which the 
total energy content flows back and forth between the two waves, resulting in 
a horizontal channelling of low frequency internal wave propagation (Phillips 
1966). This is another mode of trapping of internal waves. When the shear motion 
is strong, transfer of momentum, without transfer of mass, may occur in critical 
layers (Miles 1957, 1959). 
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Also described by Phillips were the wind-driven currents and their interaction 
with the ambient stratification. The Red Sea was given as an example in which 
the current system seems to be driven almost entirely by convective processes. 
Finally, the combined effects of stratification and rotation were discussed for 
frequencies n lying in N > n > fi sin A, where fz is the rotation speed of the 
earth, h is the latitude. 

Lofquist* described a detailed calculation of the stratified flows past a sphere 
and a doublet. The motivation of his method is to try to explain why, when a 
doublet is used to represent approximately a sphere in a stratified flow, the 
pressure and velocity become singular on the axis downstream of the doublet. 
However, several questions were raised during the discussion: is the present 
solution valid as the boundary condition is satisfied only at  a single point on 
the sphere? Does the body represented by his solution have a closed surface? 

7. Wave theory 
The session on wave theory started with the paper by T. Brooke Benjamin* 

who reviewed recent work on finite internal waves in three categories: (i) pheno- 
mena akin to hydraulic jumps and bores; (ii) long waves in fluids of limited 
total depth; and (iii) long waves in fluids whose total depth greatly exceeds the 
depth over which the density varies significantly. 

In  (i), several types of steady stratified flow with practical interest were 
summarized, and it was emphasized that adequate explanations of them are 
generally provided by analogy with well-understood principles in open-channel 
hydraulics. One example that was mentioned is the flow of a heavy fluid over 
a mound, with a lighter fluid above flowing in the opposite direction, as required 
by continuity. Another is the intrusion of a wedge of heavy fluid, of density pl ,  
moving with constant velocity U into a mass of lighter fluid, of density pz, along 
a horizontal or slightly inclined plane. These gravity-driven currents are usually 
characterized by a steeply rising head wave, behind which a zone of vigorous 
turbulence arises. By neglecting frictional effects and applying Bernoulli’s 
theorem along the interface between the fluids, von KarmBn (1940) determined 
the slope of the interface at  its foremost point on the bottom to be ~ 1 3 ,  and its 
mean height behind the head to be H = U2/[2g(p1 -p2)/p2].  However, Benjamin 
pointed out that von KarmBn’s argument leading to this expression for H must 
be repudiated, since a significant loss of total head always occurs along the inter- 
face ; but happily the same result is forthcoming by an alternative argument 
which allows for the essentially dissipative character of the flow. Benjamin also 
showed that consideration of a momentum balance for these gravity currents 
explains why the head wave must break on its rearward side, and he discussed 
some of the properties of the turbulent wake that arise in this way. 

The theory of waves of permanent form in category (ii) has been extensively 
developed during the last decade. For the classical water waves of this kind, 
airy’s theory, which neglects the effects of vertical accelerations, shows that 
waves of elevation steepen ahead of their crests as the result of non-linear effects. 
On the other hand, the linearized surface-wave theory allowing for vertical 
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accelerations shows that the steepest parts of a wave group are dispersed and 
fanned out, Recognizing that internal waves also feature this opposition be- 
tween non-linear and frequency-dispersive effects, Benjamin (1966) and others 
have considered the class of flow regimes in which these two tendencies balance 
each other, and the properties of internal solitary and cnoidal waves have 
been evaluated. It appears, however, that the order-of-magnitude relation- 
ship between the amplitude a and horizontal length scale h of these waves is 
ah2 = O(h2//3), where h is the depth of the fluid and p-' is the scale height for 
the density variations. Thus, since ph is usually a very small fraction, such 
waves need to be extremely long in comparison with h if permanency of form 
is to be ensured, and so they are difficult to realize under laboratory conditions. 

Turning to the final topic of his review, Benjamin reported that this difficulty 
is not presented by waves of finite amplitude and permanent form in category 
(iii), a study of which he had recently completed-simultaneously, it had turned 
out, with an independent investigation by R. E. Davis & A. Acrivos.* A new 
type of solitary wave was found, together with an allied class of periodic waves, 
and both have waveforms and other properties radically different from waves 
in category (ii). In  particular, the relationship between amplitude and wave- 
length is ah = O(h2),  where now h is the depth within which the density varia- 
tion is confined and not the total depth; and the fact that this relationship is 
independent of the scale height indicates that these waves are readily realizable 
in the laboratory. During the discussion period, Davis summarized some ex- 
periments he had made on solitary waves in category (iii) and he presented a 
cine film which convincingly demonstrated their property of permanence. 

C.-S. Yih* described a shallow-water theory for finite-amplitude flows of two 
(or more) superposed layers of inviscid fluids, each of a constant, but different 
density. Three categories of problems are considered. In  the first, the flow motion 
is due to an initial displacement of the free surface and of the interface, or to 
the slow horizontal motion of a vertical piston driving the fluids. In  these 
problems, the method of characteristics is used. There are two pairs of charac- 
teristics passing through each point in the (x, t)-plane. By using these charac- 
teristics the velocity field and the surface profiles can be calculated stepwise, 
although the computation is more involved than in the single-layer case on 
account of the interaction between the free surface waves and the interfacial 
waves. 

The second problem described by Yih concerns nearly horizontal gravity jets 
of a heavy fluid underneath a lighter one at  rest, or of a light fluid above a 
heavier one at  rest. 

The third problem dealt with the quasi-one-dimensional 'channel ' (or 'nozzle ') 
flow of a two-layer system with a free surface and an interface. The computation 
was made particularly simple by taking the two layers to be of equal height, 
although arbitrary heights can be treated in the same manner. We understand 
that the solutions of the last two problems have now been extended to apply 
to continuously stratified fluids. 

A. Foldvik" described a study of the linearization procedure for two-dimen- 
sional, steady, stratified shear flows of an inviscid, non-diffusive fluid. The 
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validity of the linearization was examined by estimating the neglected non- 
linear terms. The relative importance of these neglected terms was found to 
depend on the basic density and velocity and some of their derivatives. The 
conditions for which the linearized vorticity equation yield exact solutions were 
presented; these conditions are equivalent to those already given by Yih (1960) 
using a different approach. 

T. W. Wu* described the general problem of determining the wave field pro- 
duced in a stratified fluid by a concentrated disturbance moving with a given 
velocity V in an arbitrary direction, and with its strength oscillating at a fixed 
frequency w,,. The discussion covered the simple case of constant Vaisala fre- 
quency N and constant V, and touched on the general case of arbitrary N ( x ) .  
In the first case, the steady-state limit of the phase function of the internal 
waves in an unbounded fluid can be readily obtained from a simple consideration 
of the principle of stationary phase and the concept of transport of wave energy. 
These waves occupy a region which extends outwards along the front x = ege t 
(cge being the group velocity relative to the disturbance) into the undisturbed 
region if the motion has started at t = 0;  the waves in a neighbourhood of the 
front have a more complicated form, but with their amplitude diminishing with 
increasing time. For the case of arbitrary N(z ) ,  the wave field was evaluated 
by using the geometric wave approximation. The general results were applied 
to several specific examples: (i) oscillating dipole of Gortler (1943), (ii) two- 
dimensional dipole in horizontal motion (Wu & Mei 1967), (iii) horizontally 
moving three-dimensional dipole (Wu 1965), (iv) rising or sinking dipoles. These 
solutions exhibit some singular behaviour in certain regions of the wave field, 
suggesting that either the neglected effects of non-linearity and viscosity may 
be important there, or the first-order stationary-phase approximation is too 
crude for these regions. 

For the purpose of comparison, the method of Fourier transform was briefly 
reviewed. The indeterminacy of the steady-state solution, arising from the occur- 
rence of branch points and poles on the integration path of the inverse transform, 
can be resolved by formulating an initial value problem and then taking the 
large time asymptotic limit. This difficulty is curtailed in the method of Light- 
hill (1967) when the Fourier transform is applied to all space co-ordinates and 
the time. 

In  the course of discussion, Carrier commented on whether the singularities 
of the solution can be removed by a more accurate asymptotic calculation. Wu 
thought that this is very likely the case for the singularity along the course of 
a point disturbance in horizontal motion. However, it appears not so for the 
singularity along the boundary of the wave field emitted by the Gortler oscillat- 
ing dipole, since the exact solution of this linear problem, which can be expressed 
in terms of the Hankel functions, has a logarithmic singularity, and possibly 
also poles, at  this surface ; this would suggest the importance of non-linear and 
viscous effects in this region. 

Another contribution to the study of the phase configuration of internal waves 
was the paper delivered by B. S. H. Rarity." Three problems were discussed 
and the corresponding experimental results were presented. The first was the 
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problem of the internal waves produced by a point disturbance oscillating with 
a small amplitude about the origin. Determination of the phase configuration 
of the waves based on the stationary-phase principle and on the group-velocity 
concept was explained. The theoretical prediction, which is the same as the 
earlier result of Gortler and others, is in agreement with experiments conducted 
with a forcing frequency ranging from 0.2 to 1.11 of the Viiisal1 frequency 
(slightly inhomogeneous). The second problem was the Cauchy-Poisson type 
initial-value problem of a point disturbance moving impulsively in a stratified 
fluid. The asymptotic solution of the wave field has two families of waves, an 
oblique and a transverse wave, reminiscent of the Kelvin ship waves. The third 
problem was the motion of a point disturbance with a constant velocity. Rarity 
also described the law of reflexion of waves from a rigid surface, and showed 
that the wavelength changes if the surface at the point of wave impingement 
is not tangential to the horizontal. 

The photographs and several, short motion pictures taken of these internal 
waves by using a Toepler-Schlieren system are probably the most impressive 
and striking of all visualizations ever recorded in this kind of experimental 
effort. Some of the results presented by Rarity have henceforth appeared in 
publication (Mowbray & Rarity 1967). 

Another aspect of wave theory, which is concerned with the viscous effects 
on internal waves, was contributed by M. Yanowitch," who dealt with the 
problem of two-dimensional infinitesimal oscillations of an incompressible, 
stratified fluid occupying the upper half space bounded below by a horizontal 
plane, whose profile is a moving corrugation. Yanowitch found four regions of 
different flow behaviour; a boundary layer next to the plate (0 < z < zl), a 
layer (zl < z < z2)  in which the solution can be approximated by some inviscid 
solutions, a third layer ( z2  < z < x3) in which all the terms of the differential 
equations are of equal importance, and finally a viscosity-dominant layer 
( z  > x 3 ) .  Yanowitch showed that viscosity produces some downward reflexion 
of wave energy from the free upper boundary of a stratified fluid. This possibility 
is particularly interesting in relation to the propagation of long waves in the 
atmosphere. 

The last paper in the session on wave theory was given by M. C. Shen,* who 
described two physical models for the study of long waves in a stratified, com- 
pressible atmosphere. It has been noted that no solitary wave solution can be 
found in either an incompressible atmosphere of infinite height with its density 
decreasing exponentially with height, or in a compressible isothermal atmos- 
phere of infinite height. This study is concerned with the effect of the temperature 
and velocity variation on the existence of long waves in a compressible atmos- 
phere. The first model used by Shen is a compressible atmosphere of finite 
height having a given distribution of density p,(z) and velocity zc,(z) of the 
primary flow, and a known barotropic relationship between the pressure p and 
density p. 

The second problem presented by Shen was the extension to the case of un- 
steady waves in a compressible atmosphere of infinite height with arbitrary 
density po(z) and cross-wind profile u,,(x), q,(z). 
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